CONTINUOUS INTEGRATION AND
TESTING OF AYOCTO PROJECT BASED
AUTOMOTIVE HEAD UNIT

MARIO DOMENECH GOULART
MIKKO RAPELI

" euistemnnLTE 1L LLLELUNYNITY
LT et
WA
L | eaatt

Embedded Linux Conference Europe 2016

BMW)
GROUP 1 5N —

— Founded in 2001 as a wholly owned subsidiary of the BMW AG
— Strengthen BMW's software competence
— View vehicles as software systems
— Develop innovative software for future BMW Group vehicles
— Prototype solutions for early and reliable project decisions
— Participate in several open-source communities and research projects

Embedded Linux Conference Europe 2016 Page 2

Embedded Linux Conference Europe 2016

— Development of a head unit for BMW cars
— A connected multimedia computer with navigation and telephony
— Several companies, physically distributed
— Hundreds of developers, onvarious levels
— Complex infrastructure
— Technical and political obstacles to set up technical solutions

Embedded Linux Conference Europe 2016 Page 4

— Provide fast feedback for developers, integrators, project organization
— Automatic multi-stage Cl
— Software components change-verification in an SDK environment
— Build components
— Execute unit tests
— Software integration change-verification in the system build
— Build the full system, for all targets, all images
— Quality assurance checks after build
— Build Acceptance Testing (BAT) on real target environments (hardware, SDK)

Embedded Linux Conference Europe 2016 Page 5

— Linux-based cross-compilation framework
— Set of metadata and atask scheduler which, combined, can be used to build software
— Metadata
— Configuration files. Examples:
— Machine configuration (target platform)
— Target Linux distribution configuration
— Recipes
— Specification of tasks on how to build software (fetch, configure, compile, package etc.)

— References (e.g., git URL and commit id) the actual source code of the component it
describes

— Tasks can be implemented in Python or Shell scripts
— Maintained in separate meta repositories (e.g., git repository)

Embedded Linux Conference Europe 2016 Page 6

— Task scheduler: BitBake
— Inputs: metadata
— Outputs (typical use): packages, images, toolchains, SDKs etc.
— Sysroots
— Global staging area for builds
— Where build dependencies are installed during build
— Shared among all build tasks
— Caching
— Shared State cache (sstate cache)
— Cache of processed BitBake tasks
— Download cache
— Cache of source code (git, subversion, tarballs etc.) downloaded by BitBake

Embedded Linux Conference Europe 2016 Page 7

— Very flexible

— Fine-grained control on artifacts

— Compile-time configuration
— Extensible

— It's easy to add your own metadata or extend existing ones by adding layers
— License tracking

— You can specify what licenses your product cannot ship
— Support

— Commercial support

— Community support
— QA checks

— Help to catch problems earlier

Embedded Linux Conference Europe 2016 Page 8

SOURCE CODE MANAGEMENT

Embedded Linux Conference Europe 2016 Page 9

— Public open source (git, tarballs, etc.)
— Internal projects (git)
— Binary software deliveries from suppliers (subversion)

Embedded Linux Conference Europe 2016 Page 10

— Yocto Project (git)
— Open source meta layers (git)
— Proprietary meta layers (git)
— All system components are git repositories assembled as git submodules in a single base git
repository
— Each commit in the base repository represents the full state of all the git repositories
— Testing changes that affect multiple submodules is easy (e.g., Yocto Project updates)
— Drawbacks
— Confusing for developers new to git
— Adding and removing submodules cannot be easily tested in Cl
— Not nicely integrated to Gerrit, Gitweb or git GUI tools
— Alternatives
— Repo
— Custom scripts that save state somewhere

Embedded Linux Conference Europe 2016 Page 11

— Hosts git repositories for software and system components
— Topics to group commits that affect multiple repositories
— Custom tool to check out topics into a working tree (python, gerrit API’s)
— Cljobs can verify all changes with the same topic
— Positive aspect: for experienced developers this setup works well (local feature branch ==topic)
— Drawbacks
— Inexperienced developers make mistakes
— Mixing unrelated changes in a single git repository, under the same topic
— Trying to merge commits that are not part of the same branch
— Gerrit Ul is confusing
— Corporate IT hosted Gerrit is not up-to-date with upstream Gerrit
— Alternatives
— Patchwork/e-mail

— E-mail is a nightmare in corporate environments (Outlook, MS Exchange, HTML, Windows
users etc.)

— Github, Gitlab (we haven't tried them)

Embedded Linux Conference Europe 2016 Page 12

— Inthe software component we apply changes with Gerrit (apply and merge)

— Inthe system integration we create pull requests that involve multiple git repositories
— e.g., a Gerrit topic that contains changes in multiple repositories
— Pull requests are called Integration Requests (IR) in our process

— Integration requests can only be issued after a positive peer review in Gerrit and successful
verification build in Cl

— Cl system merges and tests the merged changes before release

Embedded Linux Conference Europe 2016 Page 13

OVERVIEW OF THE CI PIPELINE

Embedded Linux Conference Europe 2016

— Software component developers work with the SDK

— Push changes to Gerrit code review

— Gerrit triggers a verification build with the SDK (includes unit tests)

— In case of successful verification, changes can be merged automatically or manually

Embedded Linux Conference Europe 2016 Page 15

— Two types of integration requests
— Automatically/manually submitted from a component repository
— The git commit hash in a BitBake recipe is changed
— System integration Gerrit topic affecting multiple git repositories

Embedded Linux Conference Europe 2016 Page 16

— SDK verification
— System build
— Merge verification before release

Embedded Linux Conference Europe 2016 Page 17

SDKVERIFICATION FOR SW COMPONENTS

changes

~_ Embedded Linux Conference Europe 2016

Code
result

SW component

releases to system
integration

changes

»
»

SDK from latest

Verification result

eview

release

Page 18

SW component Integration Request (IR,
releases to system pull request for multiple git trees)
integration

Caches from latest
release: sstate, download

Git Base repository Git System build and

Integrator changes | and meta layers changes DAl tests

Verification result

Code review

Integrator result

Embedded Linux Conference Europe 2016 Page 19

Integration Request (IR,
pull request for multiple git trees)

Yes/no/

Release not yet

managers

Embedded Linux Conference Europe 2016

Change
Control
Board

IR for merge

Base repository
and meta layers

Further
Releases: tehStlng
Tagged git tree, phases...

Release artifacts, images
SDK, caches etc

Git System build and
changes DAI tests

Verification result

Page 20

— Integration requests are applied and tested in a full system build

— Change Control Board can control which integration requests get merged
— A set of integration requests are collected and pushed out as a release

— New releases can be created manually or based on timer

Embedded Linux Conference Europe 2016 Page 21

CIINFRASTRUCTURE

Embedded Linux Conference Europe 2016 Page 22

— Gerrit, git and subversion servers
— Jenkins servers (several masters and even more slaves)
— Predominantly virtual machines
— Build slaves (SDK and BitBake builds)
— SDK build slaves: 45 (8 CPUs, 20GB of RAM)
— BitBake build slaves: 36 (16 CPUs, 64GB of RAM)
— Two bare metal machines (no virtualization): 40 CPUs, 128GB of RAM
— One daily build from scratch (without sstate cache)
— File and cache servers
— Database server
— Cluster of virtual machines
— Bug and issue tracking servers

Embedded Linux Conference Europe 2016 Page 23

— Test farm with special hardware, including target hardware devices
— Jenkins masters have test jobs which are triggered by build jobs

— Custom Python-based test farm framework uses RabbitMQ to trigger test executions onthe
test farm

— Test farm has 16 SDK, 20 virtual targets and 12 real target executors
— Besides the test farm we also have automated tests for the build artifacts
— Test as much as possible without the target platforms

Embedded Linux Conference Europe 2016 Page 24

TEST FARM STATISTICS (1)

40K

Test runs (week)

30K
20K
e =
0
724 BN B8 B1G 824 an 98 916

== tEst run.count
= test run.count
== tEst run.count

= tESt run.count

avg current
465 213
979 458
587 261
894 402

total
4188 K

8812K

5283 K

8042 K

Embedded Linux Conference Europe 2016

Page 25

TEST FARM STATISTICS (2)

Number of test runs (per hour)

A

9?12 00:00 /12 08:00 812 16:00 8/13 00:00 9/13 08:00 9/13 16:00 §/14 00:00 9/14 0B:00 9/14 16:00 8/15 00:00 9/15 08:00 9/15 16:00 /16 00:00 9/16 08:00 816 16:0

max avg total
= test_run.count {hardware_revision: 19 &8 842
== test_run.count (hardware_revision: 2 i} 38
== test_run.count {hardware_revision: 17 3 453
== test_run.count (hardware_revision: 18 3 544
== test_run.count {hardware_revision: 22 & 813

Embedded Linux Conference Europe 2016 Page 26

TEST FARM STATISTICS (3)

Average test suite duration (not considering filters and exit_code 0(1)

42 min
33 min
A
c 25min
2
£ 17min
o —]
Bmin 2 Slud
s - 1 = =4 iy i D e _'P"/\
9/12:00:00 9/12 08:00 912 16:00 913 00:00 913 08:00 /13 16:00 /14 00:00 9/14 08:00 914 16:00 9/15 00:00 9/1508:00 9/1516:00 916 00:00 G/16 08:00
max avg current
== test_run.mean {hardware_revision: 14.5 min 13.8 min 12.8 min
= test_run.mean (hardware revision: 373min 268min 296 min
= test_run.mean {hardware_revision: 22.7 min 14.8 min 13.6 min
== test run.mean {hardware revision: 211 min 204 min TQ_JB min
== test_run.mean {hardware_revision: 18.3 min 8.3 min 9.1 min
= test_run.mean {hardware_revision: 274 min 13.1 min 12.3 min
= test run.mean {hardware_revision: 12.6 min 5.0 min 2.8 min

Embedded Linux Conference Europe 2016 Page 27

— Keep it simple
— Solid foundations

— Use real distributed system technologies, not hacks on top of Jenkins and regular file transfer
tools

— Corporate networks are sometimes less reliable than Internet services
— Automate everything (ansible, puppet etc.)
— Virtualization is not an ideal solution when it comes to performance

Embedded Linux Conference Europe 2016 Page 28

— Positive aspects
— It works, although sometimes administering the system is painful
— |t fulfils the requirements of the project as a Cl system
— Negative aspects
— Jenkins is not a distributed system
— Not everything is automated
— Some changes in the Cl infrastructure cannot be tested by the Cl system

Embedded Linux Conference Europe 2016 Page 29

BUILDS

Embedded Linux Conference Europe 2016 Page 30

— Use the SDK provided by BitBake builds
— SDK can be extended with packages, automatically in Cl jobs, or manually by users
— ccache is used to make builds faster

Embedded Linux Conference Europe 2016 Page 31

— Runs inside a LXC container with Ubuntu 14.04
— The container
— Provides build isolation
— Can be constructed during build (e.g., container changes can be tested in the Cl)
— Mitigates host contamination
— Prevents system components to leak into the build environment
— The influence of the host system inthe build is at least reproducible
— Container changes can be deployed faster than changes in the infrastructure
— Developers are free to use any Linux distro they want and still use the container for building

Embedded Linux Conference Europe 2016 Page 32

— Wrapper shell script around BitBake, for each target machine
— In Cl builds, synchronizes the sstate cache from the previous release before calling BitBake
— In Cl builds, used a mounted NFS share for the download cache
— Developers are out of luck with regard to caches, due to network setup complexity
— Lesson learned
—Bashand set -eux -o pipefail,atleast
— Cleanup in trap commands

Embedded Linux Conference Europe 2016 Page 33

— Each meta layer is a single git repository with a single owner (ateam)
— The owner has +2 review rights for its git repository
— A change gets approved if it gets a +2 from review and a +1 from the verification build
— More than 60 meta layers
— More than 2800 recipes
— More than 400 bbappends

Embedded Linux Conference Europe 2016 Page 34

— template file for local. conf

— sed magic for environment-dependent configuration options (e.g., mirrors and network usage
metrics)

— custom script for setting BitBake parallelization options based on the number of CPU cores and
RAM (details later)

Embedded Linux Conference Europe 2016 Page 35

—“al1”is a special BitBake recipe that specifies everything to build
— Multiple images for the target hardware (“boot modes”)
— Image artifacts include flashing and testing tools
— Images are tarballs, not filesystem images (flashing creates filesystems)
— Building an image is a serial operation (cannot be parallelized)
— Multiple images can be build in parallel, but not the installation of packages in a single image
— Images share a lot of content, but we don't have a way to reuse the common parts
— The target images have big data blobs that we manage with git annex (plugged into BitBake)
— Image tarballs are compressed with pigz for parallel compression (using multiple CPUs)
— Support for filesystem extended attributes is needed in the future

Embedded Linux Conference Europe 2016 Page 36

— Custom SDK instead of Yocto Project upstream
— Inthe SDK we mix target and nativesdk packages, in a way that it is transparent for users
— Motivation
— Developers struggled with the cross toolchain and cross environment setup
— Mistakes in the development of components’ build system (CMake)

— Complexity of the cross-compilation environment shifted from developers to the integration
team

— SDK content decoupled from images

— Custom namespace tooling instead of plain chroot (execution environment for the SDK, without
root access)

— Transparent cross-compilation in the SDK, using gcc, make, autotools, cmake and other tools
from $PATH

— From users perspective, it looks like a lightweight chroot

Embedded Linux Conference Europe 2016 Page 37

— Automated Cl tests for everything that we add to the SDK
— Eventrivial tests find bugs

— |t would be possible to run upstream Yocto Project's SDK tests in our SDK (some minor fixes
are needed)

— Users and Cl jobs can extend the SDK with packages
— Qt Creator IDE with custom plugin to ease the development using the SDK
— Our SDK approach and tests have not yet been upstreamed

— Planned for one of the next iterations
— The SDK contains tools and tests for the Cl automated tests

Embedded Linux Conference Europe 2016 Page 38

— Format: ipk
— Package archive with additional tools, debug symbols, development packages etc.

— Due to the complexity of corporate networks, we could not set up a single package repository
server

— We distribute packages to a number of mirrors in different networks (even using different
protocols)

— Some debugging tools are only available in the package repository

— We don't support incremental updates of SDK and images using the package repository yet
— Due to the complexity of the network setup, we don't have a PR server
— We bump PRs manually
— We plan to reuse the PR server database files

Embedded Linux Conference Europe 2016 Page 39

— Writing proper BitBake recipes is a form of art - only a few people know how to do this correctly
— BitBake is too flexible - too much freedom

— The shared sysroot approach in the context of parallel recipe processing causes build race
conditions

— Some software enable/disable features based on the state of sysroots

— The state of sysroots vary as build tasks are executed

— Undeclared build dependencies often go unnoticed

— Developers add features to their software, but forget to specify dependencies in recipes

— Sometimes packages build fine on populated sysroots, but break due to missing
dependencies specification when built from scratch

— Developers and Cl build images, instead of changed recipes with an empty sysroot
— Sstate cache hides problems until something triggers a rebuild
— Floating build dependencies
— Features are implicitly enabled/disabled based on the state of sysroot
— May cause build or test failures

Embedded Linux Conference Europe 2016 Page 40

— In our case, BitBake builds are not reproducible
— Packaging of language extensions (e.qg., Java's maven, JavaScript's npm) is problematic
— Using specific package managers just hides the problem and lead to not reproducible builds
— Developers may call package managers like maven from their build scripts while generating code
— Downloading modules from the Internet may fail
— No guarantees with regard to integrity of downloaded modules
— No sum checking and no caching on the BitBake side
— May break packaging
— No license tracking
— BitBake rebuilds dependents even when it is not strictly required
— API/ABI compatibility is preserved
— Leadsto long build times

Embedded Linux Conference Europe 2016 Page 41

— For “all” (pertarget machine)
— More than 22K BitBake tasks
— More than 8K packages generated (~6.4GB)
— One SDK
— ~600MB
— ~1100 packages
— Nine images (numbers on the biggest):
—~510MB
— ~845 packages

Embedded Linux Conference Europe 2016 Page 42

— Build times may range from 20 minutes to 5 hours
— Build performance can be hard to optimize
— Many variables to tweak
— Different build characteristics, depending on what has to be compiled (BitBake caches)
— Some heavy-weight components
— Big C++ components

— Some of the big ones are affected by dependencies that change frequently, so they have to
be rebuilt

— Several build steps cannot effectively utilize multiple CPUs
— Some tasks like do_rootfs (image creation)
— Run queue preparation
— buildstats data can be useful to understand builds

Embedded Linux Conference Europe 2016 Page 43

— Check the presence of expected files

— Sstate cache preparation after releases

— Publishing of artifacts (packages, images, SDK, logs etc.)
— After arelease, a new SDK is deployed into the system

Embedded Linux Conference Europe 2016 Page 44

BUILD OPTIMIZATIONS

Embedded Linux Conference Europe 2016 Page 45

— System resources
- CPU
— Memory
— Disk I/0
— Network 1/0
— Require system monitoring tools
— Performance co-pilot (pcp)
— htop
— buildstats
— syslog
— Grafana

Embedded Linux Conference Europe 2016 Page 46

— Alleviates the load on some slower paths in the company's network

— A special BitBake job (-c fetchall) populates the cache into a NFS share which are mounted by
the build slaves

— Does not fully validate the downloads after bitbake -c fetchall
— Corrupted downloads lead to build failures
— |deally, we would like to be able to run offline builds (no network)

Embedded Linux Conference Europe 2016 Page 47

— BB_NUMBER__THREADS, PARALLEL_MAKE
— The default parallelization options set by BitBake don't work for build profile
— Compilation of a single C++ file can consume gigabytes of physical RAM
— Example: machine with 16 CPU cores (PARALLEL MAKE=16, BB_NUMBER_THREADS=16)
— Worst case: 256 compilation tasks running at the same time
— We observed system load above 100
— Some builds run out of RAM, which leads to heavy swapping or OOM killer (breaks builds)
— Lesson learned
— Measure and set resource limits for BitBake tasks (cgroups)
— Ideally, the BitBake scheduler should take into account the system load when scheduling
— Should not spawn tasks when load and memory usage reach some limit

Embedded Linux Conference Europe 2016 Page 48

— In cases of lots of caching, high parallelization is desired

— In cases of low caching, high parallelization may lead to system trashing due to high resource
usage

— We use a custom script to set up parallelization options which takes number of CPU cores and
RAM into account to set the parallelization options

Embedded Linux Conference Europe 2016 Page 49

mem = get mem total()
cpus = get number cpus()

mem_cpus = (mem * 1.0) / cpus

if ncpus ==

BB_NUMBER_THREADS, PARALLEL_MAKE = (1, 1)
elif mem _cpus > 8:

BB _NUMBER_THREADS, PARALLEL_MAKE
elif mem_cpus >= 4:

BB _NUMBER_THREADS, PARALLEL_MAKE
elif mem _cpus >= 2:

BB_NUMBER THREADS = divide cpus(cpus, 2)

PARALLEL MAKE = make_ j(divide cpus(cpus, 2))
else:

BB_NUMBER THREADS = divide cpus(cpus, 2)

PARALLEL MAKE = make_ j(divide cpus(cpus, 4))

(cpus, make j(cpus))

(cpus, make_ j(divide cpus(cpus, 2)))

Embedded Linux Conference Europe 2016 Page 50

— Avoid "disk" 1/0
— Keep data on memory for as log as possible (Linux memory manager settings - sysctl)

_Vmo

— Vi

_Vmo

— Vi

_Vmo

_Vmo

—Vm

dirty background bytes = 0

.dirty background ratio = 90

dirty expire_centisecs = 4320000

.dirtytime_expire seconds = 432000

dirty bytes = ©
dirty ratio = 60

.dirty writeback centisecs = 0

— Avoid swapping
— Lots of RAM help (up to certain point)
— Increasing RAM from 64GB to 128GB on a machine with 40 CPU cores didn't improve build

times

— More aggressive parallelization options lead to system trashing, thus slower builds
— Solution; experiment; profile the build and tune resources and parallelization options

Embedded Linux Conference Europe 2016 Page 51

QUALITY ASSURANCE AND SECURITY

Embedded Linux Conference Europe 2016 Page 52

— Finds CERT programming errors like memory leaks, buffer overflows and race conditions
— Similar to Coverity

— All the BitBake recipes are recompiled using Code Sonar's compiler wrapper

— Slow: takes roughly five days

— Automated, but not directly connected to the Cl workflow

Embedded Linux Conference Europe 2016 Page 53

— We use the license information provide by BitBake recipes
— Additionally, we use Black Duck’s Protexto analyse source code for cases of license violation
— Automated, but not directly connected to the Cl workflow

Embedded Linux Conference Europe 2016 Page 54

— We need to know which CVEs affect our products
— Tooling provided by Yocto Project patches
— Black Duck also supports this, but we are not using it yet

Embedded Linux Conference Europe 2016 Page 55

CONCLUSIONS

Embedded Linux Conference Europe 2016 Page 56

— Community support on mailing lists, IRC and bug tracker is good
— Documentation is good, but the system is complex
— Yocto Project's core meta layers are our reference interms of quality
— It's difficult to achieve the same level of quality as Yocto Project's in our meta layers
— Some fundamental BitBake design decisions cause us some problems
— Shared sysroots lead to build race conditions and dependency issues
— Huge amount of global, mutable variables

— No reproducible builds (in our case), even with the use of standard build environment
(container)

— We are working on making them reproducible and intend to have this feature by the time we
ship the product

Embedded Linux Conference Europe 2016 Page 57

— Cl systems can be used to automate any task of the development process

— Cl software builds find bugs

— Cltests, even if trivial, also find bugs

— Cultural change: some developers and project partners appreciate the feedback of the Cl system
— Cultural resistance: some project partners and developers don't

— Quality of service in corporate network makes the implementation of Cl systems difficult,
reliability suffers

— Reliability of the system depends on the reliability of the parts (hypothetical example):
— Source code servers: 95% availability
— Build reliability: 90% and then developers changes on top
— Tests: 90% reliability
=>0.95*0.90 * 0.90 = 76,9% overall reliability

Embedded Linux Conference Europe 2016 Page 58

Mario Domenech Goulart
mario.goulart@bmw-carit.de

Mikko Rapeli
mikko.rapeli@bmw-carit.de

Embedded Linux Conference Europe 2016 Page 59

